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Abstract
Although Artificial Intelligence (AI) is permeating countless domains of application in modern society,
it is important to design, develop, and deploy AI-based software that safeguards humans and their
well-being. The AI Act, the European Union’s legal framework to regulate AI, sets a new standard that
must be met when creating such systems, which must protect human rights and emphasize human
agency in decision-making processes. This research proposes the architecture of an interaction paradigm,
designed starting from AI Act principles, aiming to support medical physicians in detecting brain tumors
through a multi-modal model. The goal is to establish a symbiotic relationship between humans and AI
in which the limitations of one can be compensated by the strengths of the other, while highlighting the
importance of humans’ judgment and expertise in making diagnoses.
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1. Introduction

As scientific and technological progress advances at a very fast pace, Artificial Intelligence (AI)
becomes more and more integrated in everyday activities. AI-based systems can vary depending
on the domain in which they are deployed and used, being powered by different models,
technologies, and interaction mechanisms [1].

Although AI can strongly support humans in performing repetitive and time-consuming tasks,
there are several challenges that such systems can introduce regarding ethics, societal well-being
and safety, and human agency [2]. In 2024, the European Union (EU) released a legal framework,
Artificial Intelligence Act (AI Act), with the goal of regulating the creation, deployment, and
use of AI. It undertakes a human-centric and risk-based approach that considers humans in
all of their dimensions, regardless of their role of users that interact with a system [3]. The
constraints and obligations that this legal framework introduces depend on the domain the
system is intended for and the risks it could impose on humans and society. The AI Act strongly
stresses the role of Trustworthiness of AI systems: it is obtained over time when using the

Proceedings of the second SYNERGY Workshop 2025, June 09-13, 2025, Pisa, Italy
⋆

You can use this document as the template for preparing your publication. We recommend using the latest version
of the ceurart style.
$ antonio.curci@uniba.it (A. Curci); andrea.esposito@uniba.it (A. Esposito)
� 0000-0001-6863-872X (A. Curci); 0000-0002-9536-3087 (A. Esposito)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:antonio.curci@uniba.it
mailto:andrea.esposito@uniba.it
https://orcid.org/0000-0001-6863-872X
https://orcid.org/0000-0002-9536-3087
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


Antonio Curci et al. CEUR Workshop Proceedings 1–9

system, while being a necessary precondition for regulatory compliance, as it allows increase
the system’s adoption and acceptance in humans’ workflows.

Among the numerous fields in which AI is being introduced—e.g., education, industry,
finance—medicine can be one of the most critical. AI is bringing substantial aid to physi-
cians and patients, translating into faster diagnoses, more effective therapies, and significant
steps forward in research. At the same time, several challenges must be taken into account: if
these tools are misused or provide wrong suggestions to physicians, the consequences might be
highly severe or, in some cases, irreversible [4]. This raises the need for creating AI systems
that emphasize human agency while fostering effective collaboration with humans, making
both parties work towards a common goal. The category of systems that are characterized
by such features is called Symbiotic Artificial Intelligence, which encompasses a subset of
Human-Centered Artificial Intelligence (HCAI) systems that aim at enhancing humans skills,
compensating for their limitations, and exploiting the interaction process to learn over time
[5]. The factors that influence the establishment of a trustworthy human–AI relationship
are multifaceted. For instance, ensuring that humans are in-the-loop can strongly affect the
development of trust dynamics. In Symbiotic Artificial Intelligence (SAI), for example, keeping
humans in control and informed about the processes that lie behind AI’s output can be the
gateway for enabling both parties to learn over time and exhibit adaptive behavior. There
are several techniques that can be employed to implement interaction paradigms that support
the integration of human feedback in the model’s adaptation—for example, explainability. In
this scenario, it can have a two-fold objective: first, it allows the system to provide users with
explanations about its decision-making process [5] and, second, it serves as an instrument for
humans to indicate where to intervene in the correction of the output [6, 7].

This research work introduces the proposal of a new AI-based system, called BrainDetect,
that aims to detect brain tumors based on gray-scale 2-D Magnetic Resonance Imaging (MRI)
scans and tabular data concerning the image. It is powered by a multi-modal model presented
in [8], for which a User Interface (UI) is being created along with an interaction mechanism
that exploits Gradient-weighted Class Activation Mapping (GradCAM) [9] explanations output
to retrain the model based on human expertise.

The article is structured as follows: section 2 discusses the importance of keeping humans
in-the-loop and at the center of the decision-making process, exploring an interaction paradigm
and the AI Act; section 3 illustrates the proposed architecture with the explanation-based
intervention mechanism and presents a prototype of the UI; section 4 reports the conclusions
and the future work of the research.

2. Keeping Humans in the Loop

AI is strongly contributing to the diagnosis of diseases and illnesses thanks to its ability to
process large amounts of data in short amounts of time, supporting physicians in detection and
recognition activities [10]. The case of tumors, represent an exemplary case in which AI can be
substantially helpful. This research work focuses on brain tumors, which are abnormal growths
of cells within the brain or its surrounding structures, which can be either benign or malignant
[11]. These tumors pose a significant health concern due to their complex and heterogeneous
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nature, rapid progression, and high mortality rates. Early and accurate detection is critical, as it
can improve the effectiveness of therapies, reducing the risk of irreversible neurological damage
[12].

The models that power the AI-based solutions for tumor detection are progressively improv-
ing, providing more support to humans. At the same time, the level of sophistication comes with
the cost of complexity, which is proportionally increasing over time. In this regard, a technique
that has been gaining more interest in the last few years is the use of more than one modality of
data to train an AI model. Multi-modal approaches can increase accuracy, taking into account
multiple and heterogeneous aspects and contributing to more reliable outcomes [13].

2.1. Interactive Machine Learning for Reconfiguration

When it comes to creating AI systems that support physicians in performing such delicate tasks
(e.g., tumor detection, tumor treatment), designers and developers might face several challenges
in letting users be properly aware of the processes that lie behind the systems’ output and
the motivations that led to the outcomes. Transparency, which is the the intelligibility of the
algorithm itself and its inner workings [5], plays a crucial role in this context, as it enables users
to obtain insights about the model, its structure, and processes. Explainability, on the other
hand, indicates the property of the model to generate human-understandable explanations of
its outcomes and decision-making processes [5]. Although black-box models should be avoided
[14, 15], their high performance often justifies their use, thus making post-hoc explainability
techniques useful as a workaround [5, 16]. In the case of convolutional processes for images, one
of the most widely used methods is Class Activation Mapping (CAM), specifically, GradCAM,
which highlights the spatial regions in the input image that most influence the model’s reasoning
by leveraging the gradients of the target class with respect to the feature maps [9]. These methods
can have a double-sided function, representing both the explanation of the reasoning process
and the instrument to modify or correct the outcome reached by the model. Exploiting such
explanations for reconfiguring the model can be particularly useful for implementing Interactive
Machine Learning (IML), which allows human expertise to be integrated in the model, adjusting
its performance based on their judgement and experience [17]. The integration of IML into
workflows can represent a significant step towards the establishment of a symbiotic relationship
between humans and AI, improving collaboration [18].

In this regard, the interaction paradigm presented by Desolda et al. is introduced, which
highlights that humans must be provided with the necessary instruments to make informed
decisions when using an AI system, especially in medicine, while being enabled to iteratively be
part of the model’s reasoning [5]. The paradigm has three building blocks at its core: Clarification,
Reconfiguration, and Iterative Exploration. More specifically, Clarification concerns providing
users with usable explanations concerning how the system reached its output, Reconfiguration
enables physicians to revise and check the outputs, correcting the system’s response when
necessary, and Iterative Exploration represents the strategy that allows users to perform decision-
making step-by-step and iteratively [19].
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2.2. The AI Act and Decision Making

The AI Act is reshaping the way that AI systems are being created and deployed, introducing
new obligations that aim at safeguarding the well-being of humans and society [3, 20]. The
legal framework introduces a risk-based classification of AI systems: unacceptable risk, high
risk, limited risk, and minimal risk. Depending on this classification, these systems must comply
with various obligations and standards concerning multiple aspects, ranging from ensuring
human oversight and control to requiring high quality documentation from deployers [21]. For
instance, Article 10 sets a standard concerning training data which must be fair, representative,
and free from bias [3]. With respect to decision-making and activities that can have an impact
on other individuals, Article 14 emphasizes that AI systems must be designed to allow human
intervention or override, ensuring humans remain in control over critical decisions [3].

This research work relies on the main principles that the AI Act is based on, highlighting the
importance of its application in decision-making scenarios. If properly implemented, the legal
framework can contribute to the achievement of a symbiotic relationship between humans and
AI, which finds an almost natural application in scenarios in which humans are required to
make choices. Decision-making is a very delicate and intricate process influenced by various
factors that touch on cognition, emotions, expertise, and personal experience [22]. Any external
input, such as AI’s responses, can alter physicians’ traditional way of carrying out tasks like
creating diagnoses or therapies. Thus, it must ensure that its users are provided with the
proper instruments and conditions to reach outcomes that are not harmful to society or other
individuals [23]. For example, in the case of brain tumor detection, a wrong diagnosis, blindly
accepted by a physician, can lead to unnecessary treatments, which could seriously damage
patients’ health. This implies that humans should trust AI only if they are put in the conditions
to use their judgment to distinguish the appropriateness of the outputs, even if they are not AI
specialists or computer scientists [24, 25].

The application of the interaction paradigm and the research presented in [26] provided the
instruments to build the proposals of the interaction paradigm for BrainDetect, as well as the
initial wire-frame prototypes of its UI, as described in the next section.

3. Explanation-Based Intervention

The multi-modal model that BrainDetect features is composed of two main channels that are
merged into one through a concatenation layer. The two inputs that it supports are 2-D grayscale
MRI scan images of human brain and their relative tabular data [8]. Although the current model
exhibits high levels of accuracy (99%), it is important to ensure that end-users are provided with
the right instruments to determine the correctness of its outputs and intervene when necessary.

This research proposes an architecture of an IML system [17] based on GradCAM explain-
ability output generated upon the classification of human brain MRI scans to detect tumors.
The interaction paradigm in question is illustrated in fig. 1. The goal is to keep humans always
in-the-loop, enabling them to adjust the AI model’s reasoning process based on their expertise
and knowledge, ensuring a suitable level of automation of the system for carrying out their
task properly. At the same time, transparency is also strongly considered by integrating an
explainability, GradCAM, to ensure that physicians can grasp the areas of interest of the model.

4



Antonio Curci et al. CEUR Workshop Proceedings 1–9

After receiving the MRI scan and tabular data as input to the system, the model processes
them and provides a binary classification output: ill or healthy. The physician can either agree
(case 1 in fig. 1) with the classification or disagree with it. In the latter case, the physician either
has not detected a tumor at all (case 2 in fig. 1), or has detected a tumor elsewhere with respect to
the areas highlighted by the system (case 3 in fig. 1). In both cases, human feedback is provided
to the model, affecting its future decisions by reinforcing or inhibiting its behavior. This can be
implemented, for example, through Reinforcement Learning (RL) from human feedback [27].

In case 1, the feedback is sent to the model with no further details. In cases 2 and 3, the user
is led to the Reconfiguration Screen, illustrated in fig. 2. Here, the MRI appears subdivided into
𝑛 patches of equal size, each clickable and available for selection. By selecting one patch (or
multiple adjacent ones), physicians indicate to the system an area that may contain a tumor.

If the physician disagrees with the AI system, they are asked to express their confidence in
their decision—for example, through a simple semantic differential scale (see fig. 2. This allows
the model to weigh human feedback during its adaptation. Although further investigation
is needed, this design decision was made since corrections can be noisy or, at times, wrong.
It represents a way of “letting AI know” that the user is in disagreement with its output but
still uncertain. To reach high-quality outcomes, it is important to avoid fitting the model to
potentially incorrect corrections, which could hinder the human–AI trust dynamic[28, 1].

The final objective is to enable continuous learning on the system’s behalf, with humans
guiding the process by correcting mistakes or highlighting important features.

Figure 1: Proposed architecture of the interaction paradigm for the AI model reconfiguration based
on explanations. When validating the AI output, three cases can occur: the physician confirms the
AI decision (case 1), the physician overturns the AI decision since no tumor is present (case 2), or the
physician confirms the AI decision but recognizes a tumor in a different area of the MRI scan (case 3).
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Figure 2: Example of human intervention on BrainDetect for the validation screen. physicians are able
to indicate their confidence in their own decision, for example, through a simple semantic differential
scale.

4. Conclusions

The strong impact that AI has on modern society is being regulated by legal bodies working
towards a more ethical and safe creation and deployment of such systems, especially in applica-
tion domains requiring decisions that can impact other individuals. Medicine is the domain
analyzed in this research, which proposes an architecture for a multi-modal model that detects
brain tumors. The interaction paradigm focuses on complying with the AI Act, keeping humans
in-the-loop by ensuring that they can revise and check the predictions made by the system,
and correcting potential mistakes made by the model. The ultimate goal, as mentioned in the
sections above, is to reach symbiosis between humans and AI, where both can learn from each
other, improving over time, and compensating for the limitations with the other’s strength [5].
Making BrainDetect fall under the category of SAI is an objective that is being undertaken
from the beginning of the project, which is serving as a case study for the investigation of the
necessary instruments to pursue Symbiosis-by-Design.

Currently, the work presented here is mostly a proposal: although the actual AI model for
classification exists (see [8]), ongoing research efforts aim at introducing human feedback in
the AI model training and in implementing the interaction loop presented in fig. 1. Therefore,
future work of this research regards implementing and refining BrainDetect by adhering to
Human-Centred Design principles [29].

Through user studies, the interaction loop presented in fig. 1 could be further refined by
exploring additional implicit factors (e.g., decision-making time) that could provide indications
on the evolution of human–AI trust. Such factors could be instrumental to the model adaptation.

It is also intended to investigate the integration of the selection of non-adjacent areas of the
brain in the reconfiguration step, specifically for critical patients with a brain that has multiple
ill regions. An additional user study is required to assess the effectiveness of this proposal in
accomplishing human–AI symbiosis by analyzing how the interaction mechanism proposed in
fig. 1 impacts users’ performance and their trust in AI.
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