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Abstract
Many human-AI (HAI) synergy studies rely on synthetic test environments (STEs) with recruited participants from
the general population, yet participant expertise is rarely considered or operationalized as a design factor. This
work provides a systematic review and thematic synthesis of empirical studies on AI decision support systems (AI-
DSSs) with humans-in-the-loop. We find that participant expertise in HAI literature is inconsistently addressed,
often limited to demographic reporting or acknowledged as a study limitation. This is despite growing evidence
that key metrics, such as trust perceptions, trust behaviors, and performance, are contingent on participant
expertise. In response, we propose a conceptual framework that (1) introduces a typology of participant archetypes
synthesized from existing HAI research, and (2) maps these archetypes to HAI interaction dynamics across three
common experimental phases in synergy studies: pre-interaction, in-situ, and post-task. This framework provides
a conceptual foundation for embedding participant expertise as a central driver of design decisions in synthetic
test environments to support context-aware interpretation of outcomes in HAI studies.
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1. Background

The emerging paradigm promoting AIs as collaborative teammates rather than mere tools [1] has
coalesced along with significant interest in human-AI (HAI) synergy metrics such as trust and trust
outcomes [2], collaborative decision-making performance [3], and other indicators of successful team
dynamics [4]. As a result of the growing interest in the effective design of HAI teams, investigators have
resorted to synthetic test environments or STEs to manipulate and test design variables that are purported
to impact human-AI synergy. STEs – also called simulated task environments, testbeds, microworlds, or
sandboxes – are simplified, controlled scenarios that abstract key elements of a real-world task [5, 6, 7] so
that researchers can investigate how people perceive, interact with, and respond to artificial intelligence
agents in a safe, relevant, and experimental environment. STEs thus offer a middle ground between a
tightly-controlled lab experiment and an unwieldy field study—they are intended to provide sufficient
realism for participants to experience authentic interactions with AI systems under representative
cognitive demands, while retaining the controllability and repeatability required in rigorous, scientific
research. However, despite their methodological strengths, an important yet frequently overlooked
factor influencing HAI synergy in STE-based studies is the expertise level of recruited participants.

HAI researchers have been increasingly using crowdsourcing platforms (e.g., Prolific, Amazon
Mechanical Turk) as a recruitment and deployment tool for STEs. The practice of recruiting general
population participants in online HAI research experiments likely increased during the COVID-19
pandemic but the methodological convenience, cost-efficiency, and scalability of deploying human
subject experiments online point to their sustained growth [8]. As a result of the broadened access to
a general population participant pool, empirical research in human–AI interaction has substantially
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accelerated, particularly in domains where recruitment of target expert populations are logistically
challenging or resource-intensive.

Despite the convenience of recruiting general-population participants (e.g., crowdsourced workers)
for HAI synergy experiments, reliance on this participant pool introduces potential threats to the
validity and generalizability of study findings. A common issue is task-participant misalignment - where
the difficulty of tasks is not appropriately matched to participants’ expertise or cognitive capacities.
This misalignment is particularly problematic in studies investigating high-stakes decision-making
contexts, which typically require the specialized knowledge, training, and experience of domain experts
[9, 10]. Researchers have addressed this issue by deliberately simplifying or selecting tasks that are
closely aligned with the cognitive ability and domain familiarity of general population participants.
For example, high-stakes medical decisions have been reduced to simplified analogs, such as choosing
between nutrition options instead of clinical treatments [11], while complex professional classification
tasks have been reduced from a comprehensive set of professions to a few familiar categories [? ].
Researchers have also frequently chosen familiar image or text classification tasks, which crowdsourced
workers can readily perform without requiring specialized knowledge or training [12].

However, decisions to simplify task environments in STEs are not without trade-offs. When tasks
are overly simplistic, participants may under-rely on the AI’s input [13], confounding lower measures
of trust in the AI. Conversely, tasks that are excessively complex can cause participants to over-rely
on AI recommendations, even when the AI is incorrect, confounding higher trust measures in the AI
and masking collaborative breakdowns. For example, increasing task difficulty has been shown to
result in higher reliance on AI regardless of the AI’s accuracy [13] . These findings suggest that relative
task difficulty in STEs can cause miscalibrated trust and subsequently inappropriate reliance outcomes,
rather than miscalibrated trust being a result of poorly communicated purpose, process, or performance
information [14]. The net result is a potential distortion in experimental findings in the search for
“optimal” trust—what gets categorized as appropriate or inappropriate trust, or high versus low trust,
might actually be an artifact of the task-participant pairing more so than meaningful measures of trust
or reliance that are intended to help achieve desired performance goals.

A related criticism of simplified decision contexts in HAI experiments is their inherent lack of
ecological validity i.e., scenarios often do not sufficiently resemble real-world risk contexts, particularly
in high-stakes domains. This limitation contributes to potential overgeneralization of results. Glikson
and Woolley [15] highlight a key limitation of empirical studies – “an overreliance on short-term,
small-sample experimental studies” – and emphasize that trust in AI tends to develop quite differently in
longer-term, high-stakes, real-world contexts. In other words, what researchers learn from a 30-minute
task on platforms like Prolific.co might not translate to an expert physician who has worked for months,
in multiple decision contexts, with an AI decision aid. Additionally, researchers have pointed out
that findings from one domain often fail to translate effectively to another. This is especially true in
high-stakes domains such as legal or healthcare, where experts tend to approach AI with different prior
expectations, such as exhibiting distrust or caution [16], which contrasts significantly with the findings
from simplified lab studies conducted with laypeople who, by and large, tend to show positive trust
with new technologies [17].

These methodological criticisms of STEs, especially those involving crowd sourced participants,
collectively point to an often overlooked factor in HAI synergy research: participant expertise. This
work makes two major contributions. Firstly, we introduce an empirically grounded typology of
participants in human-AI studies. This categorization clarifies ambiguity in the literature and supports
more precise experimental stratification in human-subjects research. Secondly, we show that even in
STEs, trust is not a fixed attitude, but an emergent, dynamic, and context-sensitive process impacted by
task-participant alignment, task complexity, and AI framing. Trust must be interpreted relative to these
contextual factors.



2. Synthetic Test Environments in HAI Synergy Research

STEs are task-centric platforms in HAI research that are designed to simulate real-world operational
environments, with human participants performing tasks with assistance from an AI system. While they
do not fully emulate the operational environment, researchers attempt to recreate key task elements at
appropriate fidelity to invoke similar decision-making processes [7, 18, 19, 20, 21, 22]. These synthetic
environments, often deployed in digital or web-based formats, facilitate the manipulation of variables
of interest (e.g., AI reliability, task difficulty) in a safe and controlled setting.

Researchers demonstrate considerable flexibility and creativity in how they design STEs but common
implementations include interactive virtual environments [23], factorial surveys [24], and game-based
simulations [25]. Virtual environments are immersive, interactive computer-based simulations, designed
with realistic user interfaces and task dynamics that closely mirror actual operational contexts, such
as flight cockpits or virtual emergency rooms [26]. Because these environments can simulate realistic
workload, timing constraints, and decision pressures, they are ideal for examining real-time decision-
making, trust dynamics, and performance under conditions similar to actual deployments [6]. In such
cases where deploying a real AI model is not feasible due to technology limitations or other resource
constraints, virtual environments are combined with “Wizard-of-Oz” techniques, which is when a
researcher acts as an AI to study human responses or to prototype interactions with hypothetical AI
capabilities [27]. In contrast, factorial surveys present scenarios, or vignettes, that provide participants
with systematically varied hypothetical situations that could involve AI assistance. While low in
interaction fidelity, factorial surveys are useful for isolating participants’ judgments about trust, reliance,
or ethical decision-making in early-stage assessments of attitudes or intended behaviors [28, 29]. Lastly,
game-based simulations resemble simplified video games or structured collaborative puzzles with clearly
defined goals, constraints, and rules. These tasks are well-suited to studying teamwork processes, mutual
adaptation, and communication patterns, as the gaming format naturally engages users in cooperative
problem-solving and encourages dynamic human–AI interactions [30]. While all three techniques are
used to measure and manipulate similar constructs of human-AI synergy, the methodological choice
ultimately lies on the researcher’s priorities with respect to realism, interactivity, scalability, and specific
teaming phenomena.

Many HAI decision-support experiments in synthetic environments often follow the pre-
task→task→post-task workflow. The pre-task stage covers participant on-boarding and baseline mea-
surements. Participants provide informed consent and receive instructions about the scenario and a
description of the AI decision support system. Often, a training or familiarization session is included,
where the participant learns the interface and possibly practices on a few example tasks [31, 32]. Addi-
tionally, researchers frequently administer pre-task questionnaires to gather demographics, domain
expertise, or dispositional traits. For example, a participant might fill out a propensity to trust automa-
tion survey before interacting with the AI [33]. Such pre-task indicators can later serve as covariates
or baseline trust levels. In some studies, a pre-task briefing or scenario narrative is given to provide
participants with the operational context, which can help better prepare participants for the task at
hand and control for initial state conditions across groups.

In the task execution phase, study participants engage in the decision-making tasks with the AI
system. The AI’s behavior is usually systematically varied to test research hypotheses. Some common
manipulations include the AI’s performance level (reliability, accuracy), interface elements including
data visualization or communication (transparency, explanations), or ability to complete the task relative
to the human operator (levels of automation or autonomy). During study task trials, some STEs log
directly observable data such as the participant’s decisions, response times, behavior in response to
AI’s errors, etc. In some setups, self-reported measures are also collected concurrent with the task. For
example, after each trial, or as interruptions within a trial, participants might be asked to rate their
confidence in the AI’s prediction. The task execution stage is where the observational focus is on the
dynamics of humans-AI interaction and researchers take note of task execution phenomena such as
over-reliance (e.g., mindlessly accepting AI suggestions) or skepticism (e.g., superfluously rejecting the
AI recommendations).



After completing the decision task(s), participants move to debriefing and evaluation. The standard
is to administer post-task questionnaires that probe participants’ subjective experiences with the AI
system. These often include trust questionnaires [34] and workload assessments [35]. Other common
post-task instruments include usability or satisfaction surveys [36] and bespoke surveys about the AI’s
explainability or the participant’s confidence in their own decisions.

The pre-task, task execution, and post-task structure has become a common framework in task-
oriented STEs for HAI interaction research. Beyond serving as a study protocol, these phases reflect
researcher interest in how trust in AI and related behaviors evolve over time. Stratifying the impact
of expertise and other covariates across these study phases supports a clearer analysis of outcomes
prior, during, and after exposure to an AI system. This structure also supports temporal analysis while
revealing distinct phase-specific patterns, such as differences in expectations, behaviors, or shifts in
perceptions that might be common in certain population groups and not others.

3. Who is an Expert?

How people perceive, interact with, and trust expert systems has been shown to depend on their
level of expertise, a finding that is well-established in the literature, including trust in automation
scholarship. Expert performance has been defined as “consistently superior performance on a specified
set of representative tasks for a domain” [37], suggesting that expertise is strongly domain-specific.
For example, chess Grandmasters have exceptional memory and recognition for chess patterns and
movements but not necessarily for arbitrary information [38]. Experience also plays a role: foundational
research suggests that it takes roughly about a decade of deliberate practice needed to reach world-class
performance in many domains [37]. Graded models of expertise acquisition, such as proficiency scales,
have also emerged by synthesizing traditional apprenticeship models with applied cognitive research
[39].

While HAI research conceptually adopts these definitions, it often relies on more pragmatic and
accessible indicators of expertise in practice. Some operational determinants of categorizing participants
as “expert” or “novice” include:

• Formal training or credentials. Participants with professional qualifications or domain-specific
training or education are typically considered experts. For example, a study on AI-assisted medical
diagnosis categorized board-certified radiologists as experts and non-radiology physicians as non-
experts [40]. In a study investigating the interpretation of post-hoc AI explanations, researchers
operationalized domain expertise by comparing participants’ performance across familiar (MNIST)
and unfamiliar (Kannada-MNIST) image classification tasks. Since all participants were English-
speaking adults, they were considered “deep-experts” in MNIST numerals and ”non-experts” in
Kannada numerals [41].

• Experience level (duration or exposure). Time on the job is a frequently used distinction. Some
studies’ definition depends on the minimum number of years working in the field [42], objective
temporal measure of experience [43], or the amount of domain-relevant cases processed. For
example, the U.S. Air Force distinguishes between experienced (expert) and inexperienced pilots
(novice) using 500 flight hours as the threshold [44]. In another study on human resource
recruitment, years of experience and volume of cases (applications) processed were used to
calculate an aggregate measure of expertise [42].

• Prior measures of performance. Some studies use tests or past performance to assess expertise when
a domain-relevant test is available. This is more common in traditional cognitive experiments
such as using rating systems from tournaments to distinguish between chess novices and experts
[39]. In other cases, performance-based grouping is applied retroactively; for instance, Bayer,
et al. [45] classified participants as novices if they scored below a predefined threshold on the
Amsterdam Chess Test, using performance as a post-hoc criterion for expertise.

• Self-reported expertise or knowledge. In the absence of objective indicators, studies rely on self-
reports. Participants may be asked to rate their familiarity with AI [46] or proficiency with a task



domain, such as the anthropod image classification study in [17]. This approach is a relatively
lax criterion but is sometimes adopted for its convenience in accounting for participant expertise.

However, many HAI studies do not formally categorize or measure participant expertise unless
explicitly investigating differences between experts and non-experts. Further, the terms “novice” and
“general population” are often used interchangeably in HAI literature. Clarifying this distinction is
important: a novice is an individual who is new to a specific task or domain but may be undergoing
training or has adjacent experience, while general population participants are people with no assumed
background, training, or familiarity with the task context. For example, a crowdsourced worker with
no prior training to identity screening tasks would be considered part of the general population, while
an individual who has completed professional instruction on face verification procedures but lacks
operational experience in real-world screening environments would be considered a novice.

While terminology of participant populations varies across the literature, we propose a more rigorous
stratification of participant populations based on how researchers have implicitly or explicitly referred
to participants in HAI studies:

• Laypeople. Individuals with no formal training, experience, or specialized knowledge in either the
task domain or AI systems. This group often includes crowdsourced workers from Mechanical
Turk or Prolific, university students, or members of the general public;

• Technical (AI) novices. Individuals with some exposure to machine learning, statistics, computer
science, or mathematics.

• Technical (AI) experts. Individuals with advanced training or professional experience in AI,
machine learning, or data science. This includes machine learning professionals or academics,
and system developers with substantial experience with AI systems.

• Domain novices. Individuals with formal education or structured training in the task domain
or an adjacent domain. Examples include general healthcare workers asked to do ultrasound
diagnostics [47] or pilots with flight hours below the 500-hour threshold of expertise as defined
by the U.S. Air Force.

• Domain experts. Individuals with both formal training and substantial real-world experience in the
task domain, often possessing highly developed decision-making strategies and tacit knowledge
relevant to the task.

Studies that explicitly investigate how different population groups perceive and/or interact with AI
systems have presented evidence of cognitive and behavioral differences in decision-making contexts.
For example, Ghaffar et al. conducted a comparative analysis of novice and expert optometrists reviewing
glaucoma cases [48]. Although no specific AI system was deployed in the comparative observational
study, researchers were able to isolate systematic differences in diagnostic concordance, reasoning
strategies, and temporal focus: novices relied on structured rules and external comparisons, while
experts used pattern recognition, intuitive synthesis, and strategically timed analytical assessments of
simulated glaucoma cases. Chavaillaz, et al. compared laypersons (students with very minimal training
on X-ray screening) and experts (airport screening professionals) in a simulated baggage screening
task with the same diagnostic aid [49]. Only novices experienced performance gains, while experts
demonstrated higher compliance and reliance with the decision-support tool, emergent outcomes that
suggest they more likely used the AI to confirm rather than guide decisions. Portela, et al. revealed that
domain experts (law enforcement professionals) approached an AI-supported recidivism prediction task
differently from technical novices and experts (data scientists) or laypersons [16]. While the non-expert
groups relied on their own heuristics (e.g., data scientists approached the task as a data-driven statistics
problem), domain experts perceived recidivism risk as a negotiated judgment, not a binary prediction.

As more STEs are deployed in HAI research, there is an amplified need for design guidelines that
align with the characteristics of the participant pool that is targeted for recruitment. Our objective is to
find patterns of similarities or divergences in how different participant groups interact with AI systems
in STE-based experiments, and to identify where design adaptations may be needed to support more
valid and generalizable inferences.



4. HAI Dynamics as a Function of Participant Expertise Across STE
Interaction Phases

Since the early introduction of automated decision-support systems, STE-based research, particularly
prominent in aviation, has investigated how expertise affects attitudes and behaviors toward technology.
Human factors studies in the 1990’s, for example, demonstrated notable differences between novice and
veteran pilots with respect to their initial perceptions and interactions with early-warning signals in
flight simulators [50]. Such foundational studies established that initial attitudes and mental models
– formed through factors such as personal experience and domain knowledge [51] – fundamentally
influence how people perceive, respond to, and interact with technology.

Participant expertise continues to be an important factor in HAI research but with new questions
arising due to the shift from specialized, deterministic systems to the more broadly available and
probabilistic AI models. Earlier decision support systems, such as rule-based automation in pilot
workflows, were designed for highly-trained professionals whose expertise levels were determined
based on, for example, flight hours or years of experience. By contrast, contemporary AI-based
systems are now widely used in many domains, albeit in less specialized functions to start, but with a
rapidly increasing marketplace for tools that can allow these systems to be used in a more customized
manner [52, 53]. Such systems may be made more widely available to laypeople, or minimally-trained
professionals, under the guise that such technologies might allow them to perform more like experts.

In addition, the increasing availability and use of STEs for online studies has precipitated the use
of crowd-sourced laypeople to study human-AI synergies. Consequently, how minimally-trained
professionals and study participants alike interpret and respond to AI systems may no longer depend
primarily on their understanding of the task or the interface, but also by their ability to interpret and
act upon probabilistic, inherently uncertain, and frequently opaque outputs from AI models.

4.1. Methodology

Over six years of federally sponsored research supporting four different competitively-awarded projects,
our project team has developed at least twelve iterations of four different STEs that emulate AI-based
decision-support systems (DSS) in airport security and intelligence analysis decision contexts. These
STEs were developed by our project team members — university students and faculty — with close
involvement and input from subject matter experts through bi-monthly project meetings. These STEs
were then tested with crowd-sourced study participants, volunteer participants, and, in the case of
two STEs, with full-time professionals in the corresponding decision domain. This paper reports the
preliminary findings of a systematic review of HAI studies in the literature that (1) explicitly compare
and contrast HAI interaction dynamics across different participant pools and (2) focus on one participant
group but investigate constructs that have yielded conflicting results in other studies with otherwise
similar tasks or system features. Combined with our experience in designing STEs for domain experts,
novices, and laypersons, our objective for the literature review is to provide HAI researchers with a
framework (Figure 1) and actionable guidelines for designing STEs for a given participant population
that are aligned with their cognitive strategies, prior knowledge, and task-relevant dispositions to
support valid interpretations and generalizable conclusions within that population.

4.2. Our Framework

Our preliminary review and synthesis show that, even in STEs, trust is not simply a static attitude
or preference; rather it is far more contextual than how most STE based studies tend to represent
it or measure it. Trust emerges, fluctuates, recalibrates, and these dynamics are not uniform across
participant populations. Critically, trust behaviors vary systematically with participant expertise,
expertise that reflects differences in domain knowledge, task familiarity, and technical fluency.

Figure 1 presents a conceptual framework showing how participant expertise may impact human-AI
interaction dynamics by influencing how other manipulable study factors, such as AI framing or task



difficulty, affect key responses often measured in HAI research (e.g., reliance or compliance behaviors).
We are particularly interested in empirical work that demonstrate a “two-factor interaction” effect
(in statistical terms) between participant expertise and a moderator variable. For an example of such
pattern, the same AI framing (e.g., framing the AI as an expert collaborator) may result in higher
compliance behaviors among novice operators but have little to no effect – or even the opposite impact
– among domain experts. Our preliminary review reveals these trends in recent literature – e.g., Rutjes,
et al. showed a statistically significant effect between participant expertise and transparency levels.
Domain novices were more likely to align their recommendations with the AI at medium levels of
transparency while experts were more likely to provide congruent recommendations under high-
transparency conditions [54]. Similarly, in Portela et al., domain experts revised their predictions more
often in response to AI suggestions than technical novices/experts or laypersons, based on a pre-post
comparison of their own predictions before and after viewing the AI’s recommendation [16]. This
suggests a likely active two-factor interaction (although not statistically tested) between participant
expertise and the presence or absence of AI recommendations. Accordingly, the design and deployment
of STEs for HAI research should account for these participant differences, if the goal of this research
is to address decision performance factors in operational environments that have to deal with task
complexity, system uncertainty, and participant capability across the three common phases of STE
experiments: pre-interaction, in-situ interaction, and post-interaction.



Figure 1: Hypothesized framework illustrating how participant expertise interacts with key STE moderators and influences participant responses across the pre-interaction,
in-situ, and post-task phases of STE-based HAI studies.
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