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Abstract

Animal-Human-Machine (AHM) teams are a type of hybrid intelligence system wherein interactions
between a human, Al-enabled machine, and animal members can result in unique capabilities greater than
the sum of their parts. This paper calls for a systematic approach to studying the design of AHM team
structures to optimize performance and overcome limitations in various applied settings. We consider
the challenges and opportunities in investigating the synergistic potential of AHM team members by
introducing a set of dimensions of AHM team functioning to effectively utilize each member’s strengths
while compensating for individual weaknesses. Using three representative examples of such teams—
security screening, search-and-rescue, and guide dogs—the paper illustrates how AHM teams can tackle
complex tasks. We conclude with open research directions that this multidimensional approach presents
for studying hybrid human-AI systems beyond AHM teams.
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1. Introduction

Consider a Blind or Visually Impaired (BVI) person training to be assisted by a guide dog. When
the pair reaches an obstacle along their path, they can aim to employ a learned protocol: the
dog stops, then the BVI person investigates the cause for the stop, be it a wall, a stair, etc. With
modern vision technologies, the pair could be equipped with a designated camera and a vision
algorithm that automatically identifies the reason for the dog’s stop [1], reducing the need for
the BVI person to investigate manually. Such a system can be considered as an animal-human-
machine (AHM) team that functions as a synergistic unit that can tackle complex tasks and
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Figure 1: The properties of Animal-Human-Machine team.

challenges. Conversely, the absence of any of the members makes AHM teams less capable:
without a vision system, a BVI person must exert inefficient and potentially risky efforts to
interpret why their guide dog pair made a stop; even the most cutting-edge robots cannot fully
replace a guide dog [2, 3, 4, 5]; and obviously, the team’s goal ceases to exist without the BVI
person.

In the ideal scenario, each member of an AHM team is given a role that maximizes their
respective strengths and compensates for individual weaknesses to optimize the team’s func-
tionality. However, in high-stakes, rapidly changing scenarios, individual workloads are often
exceeded, whether through anticipated or unanticipated circumstances. In those situations,
flexible reallocation is needed to redistribute responsibilities across other team members [6].
This paper investigates AHM teams as a type of a multiagent system (MAS) and discusses the
unique research challenges and opportunities in this setup. We define an AHM team as follows:

Definition 1.1. An Animal-Human-Machine team is a multiagent system with three or more
members: at least one is an animal, one is a human, and one is a machine. Each member has
agency grounded in unique sensing, decision-making, and acting capabilities.

Previous work has also highlighted some conceptual similarities between domestic animals
and machines [7]. As some robots are of organic matter [8] and animals are incorporated into
machines [9], we might reach a point where the distinction between the different agents is



blurred [10]. At this time, however, we assume that the boundaries between humans, animals,
and machines are clear. We note that this paper focuses on the technological aspects of AHM
rather than its legal or ethical implications, which are not negligible. Interested researchers can
refer to [10, 11, 12].

We move on to discuss AHM from the lens of related work, including team functional
allocation from industrial/organizational psychology and computational work linking human-
animal and human-agent interaction paradigms.

2. Related Works

In organizational psychology, teams are often defined as groups of people with a shared sense
of identity who collaborate with distinct roles for a limited time to achieve a common goal
[13]. By this definition, AHM teams seem paradoxical due to having non-human members. But
treating components like sense of identity or role distinction as variable elements of teaming
(i.e., “teamness”; [14]) can aid in understanding a broad range of collaborations. Consider
ad-hoc teamwork, where amorphous team compositions may result in a lack of clear shared
identities among collaborators [15]. Treating shared identity as a variable has borne algorithmic
solutions that aid teammates in establishing common ground, inferring each other’s capabilities,
and interpreting other agents’ underlying cooperative intents [16, 17]. Similarly, considering
“humanness” as a spectrum rather than a requirement of teaming has benefited the recent
surge in research and development of human-machine systems wherein people and machines
collectively achieve feats they could not apart [18, 14]. The same logic has long been used to
describe human-animal systems [19].

Human-animal teams are increasingly used as a metaphor for human-machine teams. Both
are interactive systems that achieve joint outcomes despite having different cognitive processes
between animal, human, and machine members [20, 21, 22, 23]. Human-animal teams and
human-machine teams also share intractable physical and cognitive asymmetries between
each member type, limiting the tasks they can perform and their understanding of the team’s
overarching goals [24]. These asymmetries are amplified in AHM teams due to the concurrent
presence of at least two types of non-human teammates [25], defining a complex range of
research paradigms and application domains. For example, how to support the development of
shared mental models between human and machine teammates [26, 27, 28, 29, 30]; however,
the impacts of these efforts will likely be limited in full AHMs due to animal cognitive limita-
tions. Conversely, the evolutionary origin of human-animal relationships results in interaction
dynamics that are more social and emotional than human-robot ones [21].

One quality that AHM teams ostensibly share is role heterogeneity, i.e., each member is
assigned a unique set of tasks to fulfill a role within a team [31]. Role heterogeneity often results
from delegating tasks to individuals based on their abilities. In all-human teams like surgical
teams, task assignment decisions are based on limited pools of team members who can fulfill
roles like surgeon, anesthesiologist, or nurse at a given time [32, 33]. However, further training
can enable today’s nurse to be assigned the role of surgeon in the future. In contrast, such
decisions in AHM teams are limited by ethical, legal, and technological concerns that come
with assigning non-human members to potentially consequential tasks [34, 35, 36].



In human-machine systems, Fitts’ list [37, 38] is an influential framework that operates on the
principle of non-overlapping task allocations based on the relative strengths and weaknesses of
people and machines (often called “HABA-MABA”, short for “humans-are-better-at/machines-
are-better-at”). Current functional allocation paradigms in human teams and human-machine
teams are still predominantly based on individual members’ capabilities [39, 40, 41, 42]. This
premise remains true amid calls for more nuanced consideration of interactions between complex
human and machine teammates rather than individual capabilities alone [40, 43, 44, 45].

To illustrate, in an AHM security screening setting, trained sniffing dogs are fairly reliable
in detecting scent markers of various illicit items [46, 47]; “sniffing” capabilities for machines
have been developed and deployed as machine teammates or alternatives to dogs, and can be
more or less effective depending on the target items [48]; last, and the least useful candidate
for the scent detection task, is the human. However, for other tasks like physical inspection
of suspicious items, people may be better than machines, who in turn are likely better than
dogs. The original Fitts’ list does not account for the strengths and weaknesses of animals;
nonetheless, its strengths-and-weaknesses framework correctly predicts current AHM security
screening configurations [48]. Other AHM teaming contexts, like field search-and-rescue and
enhanced guide dogs, have less structured team goals and tasks. Thus, additional factors are
needed to inform functional allocation decisions.

3. Functional Allocation Dimensions

We propose a set of AHM team functional allocation considerations based on the potential
strengths and weaknesses of AHM teams. These are divided into three categories, summarized
in Figure 1: (1) the Individual roles and functions that AHM team members will need to fill to
accomplish the team’s shared goals; (2) the Interaction capabilities required for AHM teammates
to function as a unit; and (3) the Resource considerations for using AHM team designs as opposed
to more traditional teams.

3.1. Individual Dimensions

A primary consideration in the design of AHM teams is how the unique capabilities of humans,
animals, and machines can be applied to individual tasks needed to accomplish team goals.
Taskwork-related functional allocation considerations include the following:

Physical Requirements. Physical requirements underpin functional allocation setups in
many AHM systems, with several key trade-offs. For example, high-exertion, low-precision
tasks can be primarily assigned to working animals or simple machines (e.g., animal-powered
plowing). High-precision tasks can be assigned to humans or specialized machines, depending
on the repetitiveness and intensity of the work.

Information Processing Requirements. Modern AHM functional allocation tends to be
driven by the unique capabilities of each member to fulfill information processing requirements.
Animals in such teams can often be trained to respond to scents (e.g., sniffing dogs) or sounds
(e.g., navy dolphins) that they are evolutionarily well-adapted to detect. Machine sensors (e.g.,
magnetometers and thermal cameras) can detect information streams beyond human or animal
capabilities, and algorithms can analyze specific information at astounding rates and volumes.



Humans can cover a wide range of information-processing tasks and are often expected to
handle those involving sociocultural contexts.

Level of Autonomy. Differences in AHM agent abilities to independently fulfill task roles
often restrict possible functional allocation configurations and require careful consideration
[35, 49]. For example, Al agents may prove to be better teammates and engage more proactively
by assigning them with higher agency, like interrupting other agents [50, 51, 52, 53, 54].

Planning Capabilities. For teams to function, each member must have a sufficient under-
standing of their tasks, the steps needed to complete them, and how to complete these tasks and
steps. Though human agent(s) would likely be in charge of most planning and assigning tasks
within an AHM team, it is still necessary for other non-human teammates to understand their
given task to accomplish it. Moreover, all agents may benefit from a better understanding of
their teammates’ beliefs, desires, and intentions [55, 56]. Several animals demonstrate Theory
of Mind capabilities [57], and relevant Al research can boost machine agents’ ability for shared
planning [16, 58, 59]. Because it is widely recognized as a necessary aspect of team effectiveness
[60, 61, 62], planning capabilities are also closely tied to interaction dimensions covered in the
following section.

Adaptability. Finally, in dynamic and high-risk work domains, such as search and rescue,
AHM team members’ abilities to learn and adapt taskwork processes when needed are another
important taskwork consideration. This is related to the agent’s training requirement (a resource
dimension in Section 3.3) but focuses less on the external costs of training or equipping a
teammate for adaptability and more on the agent’s ability to re-plan in real-time [63, 64].

3.2. Interaction Dimensions

Interaction dimensions comprised two high-level dimensions: the ability to actively interact
with other AHM team members, and the ability to respond to team members’ interactions
with them. Unlike individual taskwork dimensions, in which teammate characteristics may be
measured at the level of an individual teammate, these interaction dimensions rely on more
than one teammate to be measured. The team competencies described in this section may be
considered to be generalizable team skills, such as communication, coordination [65, 66, 67], or
trust [68].

Ability to Interact. The ability to interact with other members of an AHM team involves
communicating with teammates to coordinate individual tasks [69]. On the one hand, com-
munication can occur between human controllers and animals, where the human can provide
overarching goals for animal agents; similarly, control machines (e.g., drones) may be operated
remotely from a command station. Communication will possess challenges since each agent will
naturally communicate in different ways. This may impact how warning signs are communi-
cated to each teammate. There are solutions that can be gleaned from existing research, wherein
animals can be taught to respond to computer-mediated signals, such as shock signals [70],
when the animal deviates from safe parameters. On the other hand, the coordination aspect of
effective AHM teaming lies in the timely exchange of information among team members. While
coordination is a widely studied aspect of team effectiveness in team research [71, 72, 73], it
is especially important in AHM teams, where three different types of agents must coordinate
their activities effectively. This is why the ability to interact with different types of teammates



can require extensive resources to train or develop the necessary skills.

Other interaction-based abilities include social intelligence, co-learning, and trust. Social
intelligence refers to the knowledge of other agents’ emotional states and knowing when to
provide information to others. It is well documented that animals (e.g., dogs) possess strong
social intelligence, which allows them to understand their owners’ feelings and even intentions
[74,75,76]. Robots potentially develop similar capabilities, making social intelligence a pertinent
characteristic of AHM teams. Learning may be unique in AHM teams because, in contrast to
unidirectional human-to-animal or human-to-machine training (e.g., operant conditioning), the
significant differences between teammate’s learning capabilities require a more bi-directional co-
learning approach. Finally, trust is the belief that teammates can assist teammates in achieving
their goals in situations of high uncertainty and complexity [77, 78, 79]. Due to different
cognitive and emotional capabilities, trust may develop differently in animals and humans than
in traditional teams.

Ability to be Interacted With. These components of AHM teaming describe how a team-
mate can be an effective teammate by facilitating effective interactions. First, as described above,
proper trust helps enable teammates to interact with others. Being a trustworthy teammate
can assist in understanding how one will react in a particular situation. This is related to the
concept of reliability, which may develop differently in machines and animals. In the former,
reliability may describe how well a machine can perform a task without breaking. In the latter,
it may describe how well an animal performs a task and adheres to training and the humans’
command. For example, some guide dogs get more prone to pulling, so their handler is trained
to expect and counter this behavior [80].

Trust and reliability are similar to the concept scrutability of a team member, which is the
ability to thoroughly examine and understand a system [81]. It is expected that a trustworthy
and reliable team member is one that its team members can well understand. The characteristic
of transparency may also underlie the ability to be interacted with effectively. Transparency
operates at a level of both behavior and intent, as it had been defined previously within the
context of Al [82]. However, the transparency of an animal can be unique from a machine’s.
Finally, predictability is the ability to anticipate the actions of a machine or animal. By possessing
a better understanding of the interaction capabilities of humans and machines, it is hoped that
functions can be effectively allocated among the different members of an AHM team.

3.3. Resource Dimensions

These dimensions cover potential difficulties, vulnerabilities, or expenditures of time and money
associated with AHM teams.

Interchangeability. We define interchangeability as the ability to swap individual team
members while maintaining previous levels of team functioning and effectiveness. This is
potentially costly in AHM teams where different members have varying levels of stamina,
movement, or fluidity capabilities and may possess specific training or pre-programmed abilities.
These qualities may make interchangeability more complex in AHM than in traditional teams.
The concept of interchangeability in AHM has been widely researched and aligns with the
original HABA-MABA principles [37].

Expendability. The next potential cost is expendability, which describes how any particular



agent’s value can be evaluated through a cost/benefit analysis. It is expected that AHM teams
will have high expandability costs, as there is a natural tradeoff in abilities: humans, animals,
and machines are inherently different. Considering that AHM teams are likely to engage in
high-risk scenarios (e.g., search-and-rescue, military), expendability is likely to be a common
consideration for AHM teams. One potential avenue to investigate the expandability of agents
in a team is assigning them with Shapely values according to their different abilities [83].

Vulnerability. Another cost consideration is vulnerability, defined as how susceptible each
team member is to harm in an AHM task. The team must estimate each agent’s vulnerability,
especially in perilous tasks, such as search-and-rescue scenarios.

Training & Maintenance. Finally, there is the cost to train and maintain agents in an AHM
team. It is common for humans and animals to take months or years to train effectively on their
unique skills, so time investment will influence how animals are incorporated into an AHM
team. Furthermore, human investments also require constant labor upkeep through continued
education and compensation costs. Conversely, machine learning is also resource-heavy and
often requires specialized hardware to be effective. Given current technology, some tasks might
be learnable by machines in theory but would require too much training data in practice.

4. Use-Cases

We consider some real-life examples of AHM teaming in light of the dimensions of our proposed
functional allocation framework, namely security screening, search and rescue, and machine-
enhanced guide dog setups.

4.1. Security Screening

In security screening systems, the goal is to detect and address the presence of potentially
dangerous items. These often involve two screening steps, i.e., preliminary screenings and
manual inspections. Information processing capabilities plays a crucial role: Sniffing dogs can
only serve as preliminary screening agents for detecting suspicious odors. Machines also
perform only preliminary screening tasks with specialized sensors like metal detectors and
X-ray scanners. Interaction considerations help explain the presence of several human roles in
AHM security screening teams, which can be differentiated depending on which non-human
agents they interact with: (1) dog handlers, who respond to sniffing dog reactions to screened
items and manage sniffing dogs [47]; (2) x-ray operators, who interact with x-ray screening
machines, manipulating and interpreting images to flag suspicious items or persons for further
inspection [84]; and (3) manual inspectors, who manually inspect flagged items. Training
and maintenance costs are intertwined with limited role interchangeabilities. For example,
dog handlers often only handle specific sniffing dogs to accommodate reliability and trust
considerations. In contrast, x-ray operators typically rotate between machines they are trained
to operate, having general performance expectations from the technology in general. Sniffing
dogs themselves must be extensively trained, with a cost compounded by the need to train them
with dog handlers as a human-animal dyad. Because security screening tasks normally occur in
places like airports where there is a high volume of screening tasks in a fast-paced environment,
managing dog exhaustion is also a concern. However, although “sniffing machines” may be an



alternative, the deployment and maintenance costs of these nascent technologies remain an
obstacle today.

4.2. Search and Rescue

In search and rescue missions, the synergy between animals and humans is crucial for maximiz-
ing success in life-threatening situations. For instance, the ability of both animals and humans
to quickly process and adapt to changing environments is essential when navigating hazardous
disaster areas. Effective communication and mutual trust between animal and human team
members form the backbone of successful operations. Clear, consistent signals and commands
enable seamless coordination, while trust allows team members to rely on each other’s unique
capabilities. This is particularly important when leveraging complementary skills, such as a
rescue dog’s superior sense of smell combined with a human handler’s problem-solving abilities,
to locate victims in complex rubble structures.

The shared capacity for information processing among animals and humans is a critical factor
in search and rescue effectiveness. Both must process the environment and develop accurate
spatial representations to navigate treacherous areas efficiently. This cognitive skill, coupled
with stress resilience and interspecies empathy, allows teams to maintain high performance
under extreme pressure. By focusing on these attributes in training and team composition,
search and rescue organizations can significantly enhance their ability to locate and save victims
in disaster scenarios, addressing the fundamental question of how individual spatial cognition
contributes to overall team performance in applied settings.

4.3. Guide Dogs

Consider the use-case presented at the beginning of the paper of a guide dog setup extended with
Al capabilities: Modern vision systems can identify these different scenarios and alert the person
regarding the reason for stopping using voice. This example highlights each individual’s unique
contribution to this team: the person provides high cognitive ability and decision-making; the
dog provides sensing and physical responsiveness; the vision systems provide enhanced sensing
and inference capabilities. Interchangeability in this scenario is uniquely low, as the person
cannot replace the role of the dog, the dog cannot speak in detail about why it stopped, and the
vision system cannot physically lead a person. Expendability is high because dog training is
expensive and cannot be easily replaced. The ability to communicate and be communicated with
are also especially important in this context, as each member’s actions are highly coupled with
the other teammates’ actions.

5. Conclusion

This paper delineates the dimensions involved in AHM teaming, planning, and execution with
respect to current human-Al teaming research. It further discusses three promising use cases
that help highlight the uniqueness of such teams. We encourage researchers to identify how
their work can be utilized in AHM teams, as it holds potential mutual benefits: improving
the team’s performance while providing insights to promote research further. For example, a



machine’s alarm can help inform a human, but at the cost of disturbing the animal. Research on
the cost of communication can be utilized to improve the decision of when to sound an alarm
while providing new and exciting insights from this real-world setup.

Acknowledgments

The authors thank Polemnia Amazeen, Xavier Wallace, and Aaron Teo for their inputs in the
conceptualization of the AHM team functional allocation dimensions listed in this paper.

References

(1]

(2]

(3]
[4]

(5]

R. Ichikawa, B. Zhang, H.-o. Lim, Voice expression system of visual environment for a
guide dog robot, in: 2022 8th International Symposium on System Security, Safety, and
Reliability (ISSSR), IEEE, 2022, pp. 191-192.

A. Morris, R. Donamukkala, A. Kapuria, A. Steinfeld, J. T. Matthews, J. Dunbar-Jacob,
S. Thrun, A robotic walker that provides guidance, in: 2003 IEEE International Conference
on Robotics and Automation (Cat. No. 03CH37422), volume 1, IEEE, 2003, pp. 25-30.

J. Sakhardande, P. Pattanayak, M. Bhowmick, Smart cane assisted mobility for the visually
impaired, International Journal of Electrical and Computer Engineering 6 (2012) 1262-1265.
R. Mirsky, P. Stone, The seeing-eye robot grand challenge: rethinking automated care, in:
Proceedings of the 20th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2021), 2021.

H. Hwang, H.-T. Jung, N. A. Giudice, J. Biswas, S. I. Lee, D. Kim, Towards robotic compan-
ions: Understanding handler-guide dog interactions for informed guide dog robot design,
in: Proceedings of the CHI Conference on Human Factors in Computing Systems, 2024,
pp- 1-20.

A. Bye, E. Hollnagel, T. S. Brendeford, Human-machine function allocation: a functional
modelling approach, Reliability Engineering & System Safety 64 (1999) 291-300.

K. Darling, The new breed: what our history with animals reveals about our future with
robots, Henry Holt and Company, 2021.

D. Blackiston, S. Kriegman, J. Bongard, M. Levin, Biological robots: Perspectives on an
emerging interdisciplinary field, Soft robotics 10 (2023) 674-686.

C.J. Sanchez, C.-W. Chiu, Y. Zhou, J. M. Gonzélez, S. B. Vinson, H. Liang, Locomotion
control of hybrid cockroach robots, Journal of The Royal Society Interface 12 (2015)
20141363.

G. A. Mazis, Humans, animals, machines: Blurring boundaries, State University of New
York Press, 2008.

E. Schaerer, R. Kelley, M. Nicolescu, Robots as animals: A framework for liability and
responsibility in human-robot interactions, in: RO-MAN 2009-The 18th IEEE International
Symposium on Robot and Human Interactive Communication, IEEE, 2009, pp. 72-77.

Y. T.-Y. Hou, E. Cheon, M. F. Jung, Power in human-robot interaction, in: Proceedings
of the 2024 ACM/IEEE International Conference on Human-Robot Interaction, 2024, pp.
269-282.



[13]

[14]

[15]

[19]

[20]

[23]

E. Salas, T. L. Dickinson, S. A. Converse, S. I. Tannenbaum, Toward an understanding of
team performance and training, in: R. W. Swezey, E. Salas (Eds.), Teams: Their Training
and Performance, Ablex Publishing, Westport, CT, US, 1992, pp. 3-29.

N.J. Cooke, M. C. Cohen, W. C. Fazio, L. H. Inderberg, C. J. Johnson, G. J. Lematta, M. Peel,
A. Teo, From Teams to Teamness: Future Directions in the Science of Team Cognition,
Human Factors: The Journal of the Human Factors and Ergonomics Society 66 (2024)
1669-1680. doi:10.1177/00187208231162449.

P. Stone, G. Kaminka, S. Kraus, J. Rosenschein, Ad hoc autonomous agent teams: Collabo-
ration without pre-coordination, in: Proceedings of the AAAI Conference on Artificial
Intelligence, volume 24, 2010, pp. 1504-1509.

B. J. Grosz, S. Kraus, The evolution of sharedplans, in: Foundations of rational agency,
Springer, 1999, pp. 227-262.

R. Mirsky, I. Carlucho, A. Rahman, E. Fosong, W. Macke, M. Sridharan, P. Stone, S. V.
Albrecht, A survey of ad hoc teamwork research, in: European conference on multi-agent
systems, Springer, 2022, pp. 275-293.

T. O’Neill, N. McNeese, A. Barron, B. Schelble, Human—-Autonomy Teaming: A Review and
Analysis of the Empirical Literature, Human Factors: The Journal of the Human Factors
and Ergonomics Society 64 (2022) 904-938. doi:10.1177/0018720820960865.

D. Haraway, The Companion Species Manifesto: Dogs, People, and Significant Otherness,
Prickly Paradigm Press, Chicago, 2003.

H. C. Lum, E. K. Phillips, Understanding Human-Autonomy Teams Through a Human-
Animal Teaming Model, Topics in Cognitive Science (2023) tops.12713. doi:10.1111/
tops.12713.

M. Coeckelbergh, Humans, Animals, and Robots: A Phenomenological Approach
to Human-Robot Relations, International Journal of Social Robotics 3 (2011) 197-204.
d0i:10.1007/s12369-010-0075-6.

F. Krueger, K. C. Mitchell, G. Deshpande, J. S. Katz, Human—-dog relationships as a working
framework for exploring human-robot attachment: A multidisciplinary review, Animal
Cognition 24 (2021) 371-385. d0i:10.1007/s10071-021-01472-w.

D. R. Billings, K. E. Schaefer, J. Y. Chen, V. Kocsis, M. Barrera, J. Cook, M. Ferrer, P. A.
Hancock, Human-animal trust as an analog for human-robot trust: A review of current
evidence, Army Research Laboratory (2012) 1-28.

E. Phillips, K. E. Schaefer, D. R. Billings, F. Jentsch, P. A. Hancock, Human-animal teams as
an analog for future human-robot teams: Influencing design and fostering trust, Journal
of Human-Robot Interaction 5 (2016) 100-125. doi:10.5898/JHRI.5.1.Phillips.

L. Gerencsér, The Integration of Dogs into Collaborative Human-Robot Teams - An
Applied Ethological Approach, Ph.D. thesis, E6tvos Lorand Tudomanyegyetem, 2016.
doi:10.15476/ELTE. 2015.207.

C. Baker, R. Saxe, ]. Tenenbaum, Bayesian theory of mind: Modeling joint belief-desire at-
tribution, in: Proceedings of the annual meeting of the cognitive science society, volume 33,
2011.

S. M. Fiore, M. Johnson, P. Robertson, P. Diego-Rosell, A. Fouse, Transdisciplinary Team
Science: Transcending Disciplines to Understand Artificial Social Intelligence in Human-
Agent Teaming, Proceedings of the Human Factors and Ergonomics Society Annual


http://dx.doi.org/10.1177/00187208231162449
http://dx.doi.org/10.1177/0018720820960865
http://dx.doi.org/10.1111/tops.12713
http://dx.doi.org/10.1111/tops.12713
http://dx.doi.org/10.1007/s12369-010-0075-6
http://dx.doi.org/10.1007/s10071-021-01472-w
http://dx.doi.org/10.5898/JHRI.5.1.Phillips
http://dx.doi.org/10.15476/ELTE.2015.207

(28]

[29]

[40]

Meeting 67 (2023) 419-424. doi:10.1177/21695067231192245.

B. G. Schelble, C. Flathmann, N. J. McNeese, G. Freeman, R. Mallick, Let’s Think Together!
Assessing Shared Mental Models, Performance, and Trust in Human-Agent Teams, Proc.
ACM Hum.-Comput. Interact. 6 (2022) 13:1-13:29. doi:10.1145/3492832.

R. W. Andrews, J. M. Lilly, D. Srivastava, K. M. Feigh, The role of shared mental models in
human-AI teams: A theoretical review, Theoretical Issues in Ergonomics Science 24 (2023)
129-175. doi:10.1080/1463922X.2022.2061080.

R. Narayanan, K. Feigh, Influence of Human-AI Team Structuring on Shared Mental
Models for Collaborative Decision Making, in: Proceedings of Workshop on Theory of
Mind in Human-AlI Interaction at CHI 2024 (ToMinHAI at CHI 2024), 2024.

R. M. Belbin, Team Roles at Work, 1st ed., Butterworth-Heinemann, Oxford, 1993.

P. Carayon, A. Schoofs Hundt, B.-T. Karsh, A. P. Gurses, C. J. Alvarado, M. Smith, P. Flat-
ley Brennan, Work system design for patient safety: The SEIPS model, Quality in Health
Care 15 (2006) 150-i58. d0i:10.1136/gshc.2005.015842.

J. C. Gorman, D. A. Grimm, R. H. Stevens, T. Galloway, A. M. Willemsen-Dunlap, D. J.
Halpin, Measuring real-time team cognition during team training, Human factors 62
(2020) 825-860.

M. E. Bonfanti, From Sniffer Dogs to Emerging Sniffer Devices for Airport Security: An
Opportunity to Rethink Privacy Implications?, Science and Engineering Ethics 20 (2014)
791-807. d0i:10.1007/511948-014-9528-x.

A. Coman, D. W. Aha, Ai rebel agents, Al magazine 39 (2018) 16-26.

R. Parasuraman, C. D. Wickens, Humans: Still Vital After All These Years of Automation,
Human Factors 50 (2008) 511-520. doi:10.1518/001872008X312198.

P. M. Fitts, Human Engineering for an Effective Air-Navigation and Traffic-Control System,
Human Engineering for an Effective Air-Navigation and Traffic-Control System, National
Research Council, Washington, D.C., 1951.

J. C. De Winter, D. Dodou, Why the fitts list has persisted throughout the history of
function allocation, Cognition, Technology & Work 16 (2014) 1-11.

J. J. Howard, L. R. Rabbitt, I. M. Shuggi, Y. B. Sirotin, A Framework for Human-
Algorithm Teaming in Biometric Identity Workflows, Proceedings of the Human
Factors and Ergonomics Society Annual Meeting 67 (2023) 523-528. doi:10.1177/
21695067231192692.

B. S. Caldwell, M. Nyre-Yu, J. R. Hill, Advances in Human-Automation Collaboration,
Coordination and Dynamic Function Allocation, in: K. Hiekata, B. R. Moser, M. Inoue,
J. Stjepandi¢, N. Wognum (Eds.), Advances in Transdisciplinary Engineering, IOS Press,
2019. doi:10.3233/ATDE190141.

V. Lai, C. Chen, Q. V. Liao, A. Smith-Renner, C. Tan, Towards a Science of Human-AI
Decision Making: A Survey of Empirical Studies, 2021. doi:10.48550/arXiv.2112.
11471. arXiv:2112.11471.

E.R. Crawford, J. A. LePine, A Configural Theory of Team Processes: Accounting for the
Structure of Taskwork and Teamwork, Academy of Management Review 38 (2013) 32-48.
doi:10.5465/amr.2011.0206.

M. Johnson, J. M. Bradshaw, P. J. Feltovich, R. R. Hoffman, C. Jonker, B. van Riemsdijk,
M. Sierhuis, Beyond Cooperative Robotics: The Central Role of Interdependence in


http://dx.doi.org/10.1177/21695067231192245
http://dx.doi.org/10.1145/3492832
http://dx.doi.org/10.1080/1463922X.2022.2061080
http://dx.doi.org/10.1136/qshc.2005.015842
http://dx.doi.org/10.1007/s11948-014-9528-x
http://dx.doi.org/10.1518/001872008X312198
http://dx.doi.org/10.1177/21695067231192692
http://dx.doi.org/10.1177/21695067231192692
http://dx.doi.org/10.3233/ATDE190141
http://dx.doi.org/10.48550/arXiv.2112.11471
http://dx.doi.org/10.48550/arXiv.2112.11471
http://arxiv.org/abs/2112.11471
http://dx.doi.org/10.5465/amr.2011.0206

[44]

Coactive Design, IEEE Intelligent Systems 26 (2011) 81-88. doi:10.1109/MIS.2011.47.
K. M. Feigh, A. R. Pritchett, Requirements for Effective Function Allocation: A Critical
Review, Journal of Cognitive Engineering and Decision Making 8 (2014) 23-32. doi:10.
1177/1555343413490945.

[45] J. S. Metcalfe, B. S. Perelman, D. L. Boothe, K. Mcdowell, Systemic Oversimplification

[46]

[50]

[56]

[57]

(58]

Limits the Potential for Human-Al Partnership, IEEE Access 9 (2021) 70242-70260. doi:10 .
1109/ACCESS.2021.3078298.

T. Jezierski, E. Adamkiewicz, M. Walczak, M. Sobczyniska, A. Gorecka-Bruzda, J. Ensminger,
E. Papet, Efficacy of drug detection by fully-trained police dogs varies by breed, training
level, type of drug and search environment, Forensic Science International 237 (2014)
112-118. d0i:10.1016/j . forsciint.2014.01.013.

L. J. Myers, Dog-handler team as a detection system for explosives: A tail to be told, in:
The Aviation Security Problem and Related Technologies: A Critical Review, volume 10264,
SPIE, 1992, pp. 172-182. doi:10.1117/12.141396.

K. G. Furton, D. Winialski, Comparing the Olfactory Capabilities of Dogs with Machines
Designed to Detect Odors, in: Canines, Jenny Stanford Publishing, 2022.

P. Liu, D. F. Glas, T. Kanda, H. Ishiguro, Learning proactive behavior for interactive social
robots, Autonomous Robots 42 (2018) 1067-1085.

S. Mannem, W. Macke, P. Stone, R. Mirsky, Exploring the cost of interruptions in human-
robot teaming, in: 2023 IEEE-RAS 22nd International Conference on Humanoid Robots
(Humanoids), IEEE, 2023, pp. 1-8.

C. A. Monk, J. G. Trafton, D. A. Boehm-Davis, The effect of interruption duration and
demand on resuming suspended goals., Journal of experimental psychology: Applied 14
(2008) 299.

P. E. McKenna, 1. Keller, ]J. L. Part, M. Y. Lim, R. Aylett, F. Broz, G. Rajendran, " sorry
to disturb you" autism and robot interruptions, in: Companion of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction, 2020, pp. 360-362.

Y.-S. Chiang, T.-S. Chu, C. D. Lim, T.-Y. Wu, S.-H. Tseng, L.-C. Fu, Personalizing robot
behavior for interruption in social human-robot interaction, in: 2014 IEEE international
workshop on advanced robotics and its social impacts, IEEE, 2014, pp. 44-49.

E. Horvitz, J. Apacible, M. Subramani, Balancing awareness and interruption: Investigation
of notification deferral policies, in: International Conference on User Modeling, Springer,
2005, pp. 433-437.

M. Georgeft, B. Pell, M. Pollack, M. Tambe, M. Wooldridge, The belief-desire-intention
model of agency, in: Intelligent Agents V: Agents Theories, Architectures, and Languages:
5th International Workshop, ATAL’98 Paris, France, July 4-7, 1998 Proceedings 5, Springer,
1999, pp. 1-10.

M. Shvo, T. Q. Klassen, S. Sohrabi, S. A. Mcllraith, Epistemic plan recognition, in:
Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), 2020, pp. 1251-1259.

C. Krupenye, J. Call, Theory of mind in animals: Current and future directions, Wiley
Interdisciplinary Reviews: Cognitive Science 10 (2019) e1503.

M. d’Inverno, M. Luck, M. Georgeff, D. Kinny, M. Wooldridge, The dmars architecture: A
specification of the distributed multi-agent reasoning system, Autonomous Agents and


http://dx.doi.org/10.1109/MIS.2011.47
http://dx.doi.org/10.1177/1555343413490945
http://dx.doi.org/10.1177/1555343413490945
http://dx.doi.org/10.1109/ACCESS.2021.3078298
http://dx.doi.org/10.1109/ACCESS.2021.3078298
http://dx.doi.org/10.1016/j.forsciint.2014.01.013
http://dx.doi.org/10.1117/12.141396

[59]

[60]

[61]

Multi-Agent Systems 9 (2004) 5-53.

E. Kamar, Y. Gal, B. J. Grosz, Incorporating helpful behavior into collaborative planning, in:
Proceedings of The 8th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), Springer Verlag, 2009.

C. S. Burke, K. C. Stagl, E. Salas, L. Pierce, D. Kendall, Understanding team adaptation: a
conceptual analysis and model., Journal of applied psychology 91 (2006) 1189.

M. A. Marks, J. E. Mathieu, S. J. Zaccaro, A temporally based framework and taxonomy of
team processes, Academy of management review 26 (2001) 356-376.

[62] J. E. Driskell, E. Salas, T. Driskell, Foundations of teamwork and collaboration., American

[63]

[64]

[65]

[66]

[67]

[70]

[71]

Psychologist 73 (2018) 334.

P. Knott, M. Carroll, S. Devlin, K. Ciosek, K. Hofmann, A. Dragan, R. Shah, Evaluating the
robustness of collaborative agents, in: Proceedings of the 20th International Conference
on Autonomous Agents and MultiAgent Systems, 2021, pp. 1560-1562.

B. A. Newman, C. Paxton, K. Kitani, H. Admoni, Bootstrapping linear models for fast
online adaptation in human-agent collaboration, in: Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems, 2024, pp. 1463-1472.

E. Salas, K. A. Wilson, C. E. Murphy, H. King, M. Salisbury, Communicating, coordinating,
and cooperating when lives depend on it: tips for teamwork, The Joint Commission Journal
on Quality and Patient Safety 34 (2008) 333-341.

S. Tannenbaum, E. Salas, Teams that work: the seven drivers of team effectiveness, Oxford
University Press, 2020.

F. Semeraro, J. Carberry, A. Cangelosi, Simpler rather than challenging: Design of non-
dyadic human-robot collaboration to mediate human-human concurrent tasks., in: AAMAS,
2023, pp. 2541-2543.

A. C. Costa, R. A. Roe, T. Taillieu, Trust within teams: The relation with performance
effectiveness, European Journal of Work and Organizational Psychology 10 (2001) 225-244.
d0i:10.1080/13594320143000654.

N.]J. Cooke, J. C. Gorman, C. W. Myers, J. L. Duran, Interactive Team Cognition, Cognitive
Science 37 (2013) 255-285. d0i:10.1111/cogs.12009.

A. Bozkurt, D. L. Roberts, B. L. Sherman, R. Brugarolas, S. Mealin, J. Majikes, P. Yang,
R. Loftin, Toward cyber-enhanced working dogs for search and rescue, IEEE Intelligent
Systems 29 (2014) 32-39.

E. E. Entin, D. Serfaty, Adaptive team coordination, Human factors 41 (1999) 312-325.

[72] J. C. Gorman, P. G. Amazeen, N. J. Cooke, Team coordination dynamics, Nonlinear

[73]

dynamics, psychology, and life sciences 14 (2010) 265.
M. J. Burtscher, J. Wacker, G. Grote, T. Manser, Managing nonroutine events in anesthesia:
the role of adaptive coordination, Human factors 52 (2010) 282-294.

[74] J.J. Cooper, C. Ashton, S. Bishop, R. West, D. S. Mills, R. J. Young, Clever hounds: social

[75]

[76]

cognition in the domestic dog (canis familiaris), Applied Animal Behaviour Science 81
(2003) 229-244.

M. E. Maginnity, R. C. Grace, Visual perspective taking by dogs (canis familiaris) in a
guesser—knower task: evidence for a canine theory of mind?, Animal cognition 17 (2014)
1375-1392.

B. Hare, M. Tomasello, Human-like social skills in dogs?, Trends in cognitive sciences 9


http://dx.doi.org/10.1080/13594320143000654
http://dx.doi.org/10.1111/cogs.12009

[77]
(78]
[79]

[80]

[81]

[82]

(2005) 439-444.

J. D. Lee, K. A. See, Trust in automation: Designing for appropriate reliance, Human
factors 46 (2004) 50-80.

M. Lewis, K. Sycara, P. Walker, The role of trust in human-robot interaction, Foundations
of trusted autonomy (2018) 135-159.

Z.R. Khavas, S. R. Ahmadzadeh, P. Robinette, Modeling trust in human-robot interaction:
A survey, in: International conference on social robotics, Springer, 2020, pp. 529-541.
P.J. Craigon, P. Hobson-West, G. C. England, C. Whelan, E. Lethbridge, L. Asher, “she’sa
dog at the end of the day”: Guide dog owners’ perspectives on the behaviour of their guide
dog, PloS one 12 (2017) e0176018.

J. Kay, Scrutable adaptation: Because we can and must, in: Adaptive Hypermedia and
Adaptive Web-Based Systems: 4th International Conference, AH 2006, Dublin, Ireland,
June 21-23, 2006. Proceedings 4, Springer, 2006, pp. 11-19.

J. B. Lyons, Being transparent about transparency: A model for human-robot interaction,
in: 2013 AAAI spring symposium series, 2013.

L. S. Shapley, A value for n-person games, Contribution to the Theory of Games 2 (1953).
N. Héttenschwiler, M. Mendes, A. Schwaninger, Detecting Bombs in X-Ray Images of
Hold Baggage: 2D Versus 3D Imaging, Human Factors: The Journal of the Human Factors
and Ergonomics Society 61 (2019) 305-321. doi:10.1177/0018720818799215.


http://dx.doi.org/10.1177/0018720818799215

	1 Introduction
	2 Related Works
	3 Functional Allocation Dimensions
	3.1 Individual Dimensions
	3.2 Interaction Dimensions
	3.3 Resource Dimensions

	4 Use-Cases
	4.1 Security Screening
	4.2 Search and Rescue
	4.3 Guide Dogs

	5 Conclusion

